Simulating the fluid forces and fluid-elastic instabilities of a clamped–clamped cylinder in turbulent axial flow
نویسندگان
چکیده
In this article, the fluid forces and the dynamics of a flexible clamped-clamped cylinder in turbulent axial flow are computed numerically. In the presented numerical model, there is no need to tune parameters for each specific case or to obtain coefficients from experiments. The results are compared with the dynamics measured in experiments available in literature. The specific case studied here consists of a silicone cylinder mounted in axial water flow. Computationally it is found that the cylinder loses stability first by buckling. The threshold for buckling is in quantitative agreement with experimental results and weakly-nonlinear theory. At higher flow speed a fluttering motion is predicted, in agreement with experimental results. It is also shown that even a small misalignment between the flow and the structure can have a significant impact on the dynamical behavior. To provide insight in the results of these fluid-structure interaction simulations, forces are computed on rigid inclined and curved cylinders, showing the existence of two different flow regimes. Furthermore it is shown that the inlet turbulence state has a non-negligible effect on these forces and thus on the dynamics of the cylinder.
منابع مشابه
Viscous Fluid Flow-Induced Nonlocal Nonlinear Vibration of Embedded DWBNNTs
In this article, electro-thermo nonlocal nonlinear vibration and instability of viscous-fluid-conveying double–walled boron nitride nanotubes (DWBNNTs) embedded on Pasternak foundation are investigated. The DWBNNT is simulated as a Timoshenko beam (TB) which includes rotary inertia and transverse shear deformation in the formulation. Considering electro-mechanical coupling, the nonlinear govern...
متن کاملAixsymmetric Stagnation Point Flow of a Viscous Fluid on a Moving Cylinder with Time Dependent Axial Velocity
The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinite moving cylinder with time-dependent axial velocity is investigated. The impinging free stream is steady with a strain rate k. An exact solution of the Navier-Stokes equations is derived in this problem. A reduction of these equations is obtained by use of appropriate transformations. The general self-si...
متن کاملEFFECT OF TIME-DEPENDENT TRANSPIRATION ON AXISYMMETRIC STAGNATION-POINT FLOW AND HEATTRANSFER OF A VISCOUS FLUID ON A MOVING CIRCULAR CYLINDER
Effect of time dependent normal transpiration on the problem of unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder moving simultaneously with time-depended angular and axial velocities and with time-dependent wall temperature or wall heat flux are investigated. The impinging free stream is steady with a strain rate . A re...
متن کاملAXIAL FLOW IN A ROTATIONAL COAXIAL RHEOMETER SYSTEM 1. BINGHAM PLASTIC
A mathematical analysis has been carried out for the axial flow of a Bingham plastic fluid, in the Concentric Cylinder Viscometer which consists of a cylindrical sample holder (the cup) and a cylindrical spindle (the bob) coaxial with the cup. The fluid to be tested flows through the annular gap of the cup and the bob system, sheared by the rotation of the inner cylinder, while the outer cy...
متن کاملHydroelastic wave diffraction by a vertical cylinder.
A linear three-dimensional problem of hydroelastic wave diffraction by a bottom-mounted circular cylinder is analysed. The fluid is of finite depth and is covered by an ice sheet, which is clamped to the cylinder surface. The ice stretches from the cylinder to infinity in all lateral directions. The hydroelastic behaviour of the ice sheet is described by linear elastic plate theory, and the flu...
متن کامل